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Summary:  This concept note represents initial efforts to down scale a global flood vulnerability 
model developed in a cloud based computing tool Google Earth Engine for the noncoastal  
“upstate areas” of the State of New York. This customized New York application of the model is 
the result of collaboration with our colleague at Cornell University. The model analyzes social 
and physical vulnerability to riverine flooding based on multiple data inputs, outputs the high 
risk areas for flooding, and runs statistics on the population living in the flooded zone.  Initial 
results examine the ability for the model to predict risk for a specific storm area, county, or 
watershed in 1-30 seconds. Future work requires further testing and validation of the model, a 
more advanced algorithm, and dynamic user-friendly interface for public risk communication of 
both underlying vulnerability and an early warning system. A zoomable web map of baseline 
vulnerability data is available for exploration here. 
 

I. Introduction to the model, framework, and context 
II. Biophysical Vulnerability 
III. Social Vulnerability 
IV. Outputs 
V. Future Directions 
VI. Disclaimer 
VII. Appendix 

 
I. Introduction: 
We are developing an application in the new Google Earth Engine API that uses highly 
parallelized cloud computing to model social-ecological vulnerability to flooding at high spatial 
resolution. The model is currently designed to produce coarse results at a global scale. For this 
project, we will refine the model to run at higher resolution on watersheds in New York State. 

mailto:Bessie.Schwarz@Yale.edu
mailto:Elizabeth.Tellman@Yale.edu
mailto:kgtidball@cornell.edu
https://mapsengine.google.com/08039105425737821391-10002667888828033184-4/mapview/?authuser=1
http://earthengine.google.org/#intro
http://earthengine.google.org/#intro
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The proposed activity draws from modeling data readily available on the Google cloud platform, 
including elevation, satellite imagery, and census data to dynamically refine a surface of risk 
within a flood prediction zone produced by weather services (i.e. NOAA). In this proposed 
model, the algorithm first finds the flood zone using a set of biophysical indicators of 
vulnerability and then analyzes social vulnerability within the flood risk zone to find the overall 
area of risk. The current application finds the physical area of highest risk, and the number of 
people living in the risk area. 
 
Model Framework and Context 
 

“To foster resilience and sustainability within a system, an understanding of adaptive cycles within 
the coupled human-environmental system, and the scale at which they occur, is necessary” 

 -from “A place-based model for understanding community resilience to 
natural disasters,” Cutter et al 2008 

 
This models draws from a social-ecological systems 
approach that assumes that flood vulnerability is the 
product of both biophysical and social risk. The model 
computes an underlying vulnerability index for riverine 
flooding (NOTE: not coastal flooding/ storm surge) based 
on basic assumptions in physical and social sciences, e.g. 
that flooding occurs in areas that are low and flat, pools at 
the bottom of larger watersheds, occurs in watersheds that 
have a lot of impervious surfaces and less capacity to infiltrate rainfall, and that people who are 
very poor, very old, and very young, live in fragile communities and are less likely to have the 
means to evacuate themselves, or to be evacuated by their neighbors (see Cutter et al 2003 and 
Cutter et al 2008). The model scores each pixel by adding up each of these biophysical and social 
indicators.  

This pilot research focused on application of the vulnerability model to the entire state of 
New York.  Most attention in the post Sandy environment has been on building disaster 
resilience and coastal flood surge modeling capabilities for New York City. Little attention has 
been focused on building disaster resilience, risk communication, and forecasting for the rest of 
the state.  While FEMA flood maps exist for some areas (and were recently updated for NY), 
many counties remain without flood maps, or have maps as much as 30 years out of date.  
Furthermore, when a storm arises, flood predictions are often too late (pers. Communication, NY 
Office of Emergency Management) or poorly communicated (pers. Communication, Dr. Keith 
Tidball director of NY EDEN (Extension Disaster Education Network).  An interactive, live 
updating, publicly available flood vulnerability model in the cloud would allow citizens to zoom 
into their local area and see risk areas for themselves. Furthermore, integration with other early 
warning text messaging systems, such as Ushahidi and Frontline SMS, could be spatially 

http://www.ushahidi.com/
http://www.frontlinesms.com/
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targeted to citizens living in predicted risk areas days in advance.  For communities in flood 
prone watersheds, such as the Oswego, Mohawk, and Upper Hudson, a live flood vulnerability 
model could be a valuable tool in an extreme event.  Cloud computing could allow for rapidly 
updating predictions in multiple watersheds. Furthermore, one built, the flood modeling 
architecture could be used as a scenario-modeling tool for future prediction of strong storms 
under climate change scenarios. 

 In addition to opportunities presented by the NY RISE initiative, developing a cloud 
computed flood vulnerability model for testing is ideal in a place like New York.  New York 
(like most locations in the USA) has access to data from stream gages and historical flood maps 
that will aid in calibrating and testing the vulnerability model.  Recent storms (i.e. Ike, Irene, and 
Lee), and even flooding last July, provide recent and reliable data for calibration and testing. 
Testing the viability of Earth Engine flood vulnerability in an accessible location like New York 
State will provide insight into the potential for global model expansion that might encompass 
data poor countries. 
 
II. Biophysical Indicators of Vulnerability: 
The biophysical risk prediction area refines an already existing weather prediction of general 
“flood risk.” This is not a physically process based watershed hydrologic and hydraulic model 
that “flows” quantitative precipitation estimates over a surface in real time. Examples of complex 
flood mapping models with 2 and 3-d differential and numerical equations include LISFLOOD, 
MIKE-SHE, and TOPKAPI that involve flow routing routines that are not possible in the 
parallelized computing environment in Google Earth Engine. The parallelization process sends 
individual pixels (or potentially groups a region of pixels) in a grid to different parallel servers to 
process each step of an algorithm, and then puts them back together again.  For hydrologic and 
hydraulic modeling that requires complex routing algorithms where pixels must communicate in 
one another in sequential fashion in multiple dimensions (i.e. the D8 flow accumulation 
algorithm used to calculate contributing area used to calculate topographic index in 
TOPMODEL), parallel computing is problematic (Qin and Zhan 2012). Our model simplifies the 
assumptions made in these more complex models and computer factors with simple algebra on a 
pixel by pixel basis. This model takes advantage of Google’s cloud computing and is thus 
tailored towards a rapid assessment evaluation in an oncoming storm; it is not meant to replace 
detailed 3-D hydrologic modeling. The four biophysical parameters are explained below. 
 
1. Elevation: uses 10m pixel resolution DEM from the National Elevation Dataset for analysis in 
US. Elevation is rescaled from 0-5, with low elevations (below 125 meters above sea level 
receiving a score of 5, elevations between 140 and 125 a score of 4, etc.).  
 
2. Slope: calculated in degrees using the elevation layer. Slope is rescaled from 0-5, with slopes 
of .00001 to 0 gaining a score of 5, slopes of .5 to .00001 a score of 4, etc.  
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3. Impervious Surface: calculated from vegetation data using an NDVI index with a 2012 global 
composite of Landsat 7. A 2012 composite of Landsat 7, representing the average pixel radiance 
for the year, was pulled into the earth engine API. We selected the near infrared and infrared 
banks to calculate NDVI, the normalized vegetation index. This equation is infrared-red 
bands/infrared+red bands.  The NDVI output is a relative index of vegetative cover from -1 to 1. 
Thus, less vegetation represents lower infiltration rates, and higher risk areas in a flood.  Low 
vegetation areas, such as cemented urban surfaces, have a low NDVI. The NDVI was rescaled 
from 0-5, such that NDVI less than zero receives a score of 5, and .2 to 0 a score of 4, and so on. 
  
4. Topographic Index: describes the spatial distribution of the soil moisture and related landscape 
processes (equation in Moore et al 1991). This final indicator is a function of the contributing 
area of each pixel in its watershed and slope gradient. As catchment area increases and slope 
gradient decreases, topographic index and soil moisture content increase. Topographic index is 
used in flood models such as TOPMODEL (variable contributing area conceptual flood mode- 
see Beven et al 1984l), in which the major factors affecting runoff generation are the catchment 
topography, and the soil transmissivity that diminishes with depth. Topographic index controls 
flow accumulation, soil moisture, distribution of saturation zones, depth of water table, 
evapotranspiration, thickness of soil horizons, organic matter, pH, silt and sand content, and 

plant cover distribution.  
 
The equation we use comes from  
Moore et al (1991), and is: 
  
Topographic Index = ln [[(flow 
accumulation+1)*cell 
area]/tan(slope)]] 
  
Flow accumulation raster data comes 
from a 30 arc second resolution 
raster by USGS, now made publicly 
available in the Google Earth Engine 
library per our request. Flow 
accumulation is a function of how 
many cells flow into each pixel, and 

represents the “upslope” contributing area for each point. Flow accumulation, plus one, is 
multiplied by the cell area to get the contributing catchment area for each cell. This is divided by 
the slope gradient at each point. Slope is calculated from the USGS 10m DEM National 
Elevation Dataset. .000001 is added to each slope, so that the natural log of zero slope data 
points (like many rivers and floodplains) are not removed from the topographic index. All other 
mathematical functions are available in Google Earth Engine. 
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All four biophysical variables are combined (added) to yield a composite score of 1-20. The risk 
surface displayed here shows increasing redness as the risk score increases. Note that existing 
standing water (lakes, ponds, and rivers, shown in bright blue) have been masked out of the 
biophysical risk index based on the “open waters” categories of the National Land Cover data 
set. Open water thus receives a default risk score of “0” 
  
The predicted flood area includes all pixels in the 95th percentile of the biophysical risk surface. 
This results in variable thresholds for what “level” of biophysical risk denotes a truly “flooded” 
area, shown in medium blue, here for the Albany/Schenectady area.

 
 
III. Social Indicators of Vulnerability:   
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The model predicts social vulnerability to disaster by adapting techniques and scholarship by Dr. 
Susan Cutter at the Hazard and Vulnerability Institute at the University of South Carolina (Cutter 
et al 2003, Cutter et al 2008). The model scaled five of Cutter’s indicators to NY social data 
using US Census tract level data from 2010. Each indicator is converted into a five-point scale of 
risk based on its absolute numbers. Thus the combined social risk index is on a twenty five point 
scale. 
 
1. (Age) Children: calculated based on tracts with a large number of children under 5. Areas with 
a large number of young children are more vulnerable because they require assistance during 
evacuation, potentially endangering themselves and their caretakers. 
 
2. (Age) Elderly:  calculated based on tracts with a large number of people over 85 
 
3. Community Cohesion:  calculated based on percentage of change in the population between 
2000 and 2010 as a proxy for communities with increasing or decreasing populations. The higher 
the change the less “cohesive” the community is deemed to be. 
 
4. Density:  calculated based on tracts with a high population per square Kilometer  
 
5. Poverty:  calculated based on tracts with a large number of individuals below the poverty line.  
 
The social risk index in the model is run solely on the predicted flood zone by applying the 25 
level social risk surfaces to the flood zone. The threshold for the high risk zone is dynamically 
determined based on the overall risk for the area of interested input into the model, examining 
the 95th percentile of risk for the area of interest. 
 

Therefore, the model naturally favors 
the physical indicators of risk, 
predicting results only within the 
flood. The desired percentile of risk 
for the index can be selected (the 
sample images provided here use a 
variety of thresholds), and the highest 
risk zone will then be used for further 
analysis.  
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IV. Outputs: 
This link leads to an interactive web map with several of the risk indexes and the watersheds of 
NY (full link: https://mapsengine.google.com/08039105425737821391-
10002667888828033184-4/mapview/?authuser=1) 
 
After determining physical and social risk indexes and identifying the highest risk zones within 
the area of interest, the model analyzes areas most at risk to determine key attributes including: 
physical size, number of residents within, and the county with most number of people at high 
risk. 

https://mapsengine.google.com/08039105425737821391-10002667888828033184-4/mapview/?authuser=1
https://mapsengine.google.com/08039105425737821391-10002667888828033184-4/mapview/?authuser=1
https://mapsengine.google.com/08039105425737821391-10002667888828033184-4/mapview/?authuser=1
https://mapsengine.google.com/08039105425737821391-10002667888828033184-4/mapview/?authuser=1
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V. Future Directions: 
There are many exciting directions for this project based on initial research. These include a 
more advanced regression based flooding algorithm, partnering with Azavea to create web based 
communication vulnerability tools, higher resolution social data, and additional analysis on 
proximity to hospitals and safe evacuation routes out of the flood zone. 
 
More Advanced Flood Algorithm 
The current biophysical risk algorithm is a simplification of major physical processes that play a 
role in flooding. However, this could be further calibrated and validated with historic flood data 
to generate a locally specific algorithm that takes into account not only general watershed 
topographic characteristics, but also flood control management structures such as levees and 
dams, and their ability to mitigate flood risk in different storms for each watershed. Not only 
would this capture the reality of flooding better, but could result in a more dynamic algorithm 
that inputs quantitative precipitation data predictions (in a raster data format such as NEXRAD). 
This approach would require a multiple logistic regression.  
 
Partner with Azavea 
We have begun initial talks with Azavea, a web-GIS company based out of Philadelphia. Azavea 
has pioneered geo cloud computing for hydrology in its GeoTrellis platform. Azavea has tested 
initial research on live watershed modeling in Philadelphia, Delaware, and Southeastern 
Pennsylvania funded by the National Science Foundation (NSF). Azavea’s efforts in this Wiki-
Watershed project enable live user interaction with models by drawing areas of land use change 
and analyzing effects on runoff.  In initial conversations with developers and the Azavea CEO, 
this tech company is very interested in collaborating with use to help develop an exciting user 
interface, communication tool, and advanced real time computing.  
 
Refine Social Data 
To refine the social risk index we could increase the resolution from the already fine US Census 
tract level to the block level and include more social indicators like race and percentage rental 
homes. 
 
Tailor output 
There are many more aspects of the high risk zone that the model can analyze including 
evacuability of the high risk areas, more refined number of residents in the high risk zone, 
number of emergency relief stations in or near the high risk zone. 
 
VI. Disclaimer: 
This script for and right to this model are property of Bessie Schwarz and Beth Tellman. Any 
internal distribution of the document’s content or images must acknowledge them, and their 
permission is necessary for external distribution.  

http://www.azavea.com/products/geotrellis/about/case-studies/model-my-watershed/
http://www.wikiwatershed.org/model.html
http://www.wikiwatershed.org/model.html
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Appendix:  
More on advanced flood algorithms 
This approach would require a multiple logistic regression that uses historic flood data to predict 
the contribution of flood risk factors on a pixel by pixel basis (the area of impervious surface 
upstream, the number of dams upstream, local topographic index, soil type, watershed size, etc.) 
and the amount of precipitation necessary to “flood” each pixel. This type of data driven 
approach (see Pradhan 2010 for a review and example) builds a more complex model that 
respects local flood characteristics, with an algorithm that avoids computationally intensive flow 
routing. 

The multiple logistic regression will use the Dartmouth Flood Observatory (DFO) 
database, which has spatially explicit rasters of flood extent. These are commonly used in flood 
vulnerability modeling as flood observations for validation (Bates and Roo 2000). A quick 
search of the DFO database shows at least 4 storm event observations for upstate New York from 
2000-2008.  The image below is an example of flood extent for June 29th 2006 in the upper 

Susquehanna River Basin.  In addition to 
this data, the NY RISE Initiative may have 
access to more localized high-resolution 
data for recent events (such as Hurricane 
Irene in 2011, or flooding Summer 2013). 
Some events will be reserved for manual 
model calibration (i.e. decisions to remove 
the impervious surface parameter in the 
index, add in other considerations such as 
location of levees, bridges, reservoirs, and 
other hydraulic structures), while others 
will be reserved to test the model and 
quantify uncertainty. Part of the reason for 
selecting DFO data for model validation is 
that the entire database will be included in 
Earth Engine by May 2014. Thinking 

ahead to global application of the model and model validation, devising a method to use DFO 
data is appropriate. 
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